Faculty of Engineering Management

STUDY MODULE DESCRIPTION FORM					
		Code			
Organization of Production and Logistics in A	utomotive industry	1011102411011114057			
Field of study	Profile of study (general academic, practical)	Year /Semester			
Logistics - Full-time studies - Second-cycle	general academic	1/1			
Elective path/specialty	Subject offered in:	Course (compulsory, elective)			
Corporate Logistics	Polish	elective			
Cycle of study:	Form of study (full-time,part-time)				
Second-cycle studies	full-time				
No. of hours		No. of credits			
Lecture: 15 Classes: - Laboratory: -	Project/seminars:	30 5			
Status of the course in the study program (Basic, major, other)	(university-wide, from another fi	eld)			
other	university-wide				
Education areas and fields of science and art		ECTS distribution (number and %)			
technical sciences		5 100%			
Technical sciences		5 100%			
Responsible for subject / lecturer: Responsible for subject / lecturer:		ct / lecturer:			
dr hab. Inż. Marek Fertsch, prof.nadzw. dr inż. Paulina Golińska Dawson		wson			
email: Marek.Fertsch@put.poznan.pl email: Paulina.Golinska@put.poznan.pl		ut.poznan.pl			
tel. 061 665 3416	tel. 61 665 34 14				
Faculty of Engineering Management Faculty of Engineering Management		0			
ul. Strzelecka 11 60-965 Poznań	ul. Strzelecka 11 60-965 Poznań				

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Basic knowledge of the organization of production and logistics fundamentals
2	Skills	student has the ability to perceive, to associate and interpret phenomena in organizations can take advantage of the fundamental information technologies for the management
3	Social competencies	student is aware of the consequences of their decisions and is prepared to take on social responsibility for decisions

Assumptions and objectives of the course:

To familiarize students with the principles of the organization of production and logistics in the automotive industry. Familiarize students with the fundamental techniques used in this area

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. Knows the basic relations between the sphere of technical and economic characteristic of the object in the field of logistics [K2A_W04]
- 2. has thorough knowledge of manufacturing engineering and its relations with logistics in automotive industry [K2A_W05]
- 3. is familiar with the basic concepts and methods of material flow management in automotive industry [K2A_W08]
- 4. knows the basic concepts characteristic to the subject being studied in the production and logistics in automotive industry [K2A_W09]
- 5. can explain in detail the methods, tools and techniques characteristic for production and logistics in automotive industry [K2A_W13]

Skills:

- 1. Can design a process of analysis of the phenomenon falling within the production and logistics in automotive industry [K2A_U09]
- 2. Can formulate and solve problems through multi-disciplinary integration of knowledge in the fields and disciplines used in the design of production and logistic systems in automotive industry [K2A_U10]
- 3. Is able to formulate and test hypotheses regarding the issues related to the design of logistics systems in automotive industry [K2A_U11]
- 4. is able to assess the usefulness and the usability of new developments (techniques and technologies) in logistics and related functional areas in uatomotive industry [K2A_U12]

Social competencies:

- 1. Has sense of responsibility for his/her own work and the willingness to comply with the rules work in a team and to take responsibility for collaborative tasks [K2A_K03]
- 2. can see the cause-and-effect relations in achieving the goals set and range importance of alternative or competing tasks [K2A_K04]

Assessment methods of study outcomes

Forming assesment

a) the project-based discussion on solutions that wants to include in the project b) a lecture on the basis of answers to questions concerning the material discussed in the previous lecture

Summary assessmen

- Project a) based on a public presentation of the project results and discussion about them, b) on the basis of the substantive quality of their project
- Lecture: written test

Course description

The lecture begins with a short presentation of the car as an industrial product (complexity, applied technology, basic units), and the process of its design. Will be presented typical assembly systems, assembly line organization and the organization of a plant producing cars. The deals with the process of planning and control at the plant producing cars. You will then be presented to the planning material requirements for the production of cars. It will explore various options of procurement, including: suppliers parks, just-in-time and just-in-sequence deliveries. The scope covers also organization of the end-of-life vehicles management.

At exercises class students become familiar with the specific problems of the organization of automobile assembly line, production planning and control and the organization of supplies in different variants.

Teaching methods: conventional specialist lecture, team project, work with literature

Basic bibliography:

- 1. Golinska P., Fertsch M. Organizacja produkcji i logistyki w przemyśle samochodowym, wyd. PP 2012
- 2. Rohatyński R., Remanufacturing-istota-znaczenie- realizacja [w:] Fertsch M.(red.), Elementy inżynierii Logistycznej, Wydawnictwo Instytutu Logistyki i Magazynowania, Poznań 2017
- 3. Fertsch M., Metoda planowania zapotrzebowania materiałowego w planowaniu produkcji i sterowaniu jej przebiegiem, Wydawnictwo Politechniki Poznańskiej, Poznan, 2013
- 4. Cyplik P., Fertsch M., Hadaś Ł., Zarządzanie dystrybucją. Metody i mierniki oceny. Wydawnictwo Politechniki Poznańskiej, Poznań 2011

Additional bibliography:

- 1. Golinska P. Enviromental Issues in automotive industry, Springer, Berlin heidelberg 2014
- 2. Hall R.W., Zero Inventories, Dow Jones Irving, Homewood, Illinois, 1983
- 3. Monden Y., Toyota Production System, Industrial Engineering and Management Press, Norcross, USA, 1983

Result of average student's workload

Activity	Time (working hours)
Project of the manufacturing system and logistics system in the automotive industry	30
2. Lecture	15
3. Preparation of project	25
4. Consultation	13
5. Preparation for test	15
6. Test	2

Student's workload

Source of workload	hours	ECTS		
Total workload	125	5		
Contact hours	60	3		
Practical activities	70	2		